Dumet .Net

Incandescent Lamps


An incandescent light bulb, incandescent lamp or incandescent light globe is an electric light with a wire filament heated until it glows. The filament is enclosed in a bulb to protect the filament from oxidation. Current is supplied to the filament by terminals or wires embedded in the glass. A bulb socket provides mechanical support and electrical connections.

Incandescent bulbs are manufactured in a wide range of sizes, light output, and voltage ratings, from 1.5 volts to about 300 volts. They require no external regulating equipment, have low manufacturing costs, and work equally well on either alternating current or direct current. As a result, the incandescent bulb became widely used in household and commercial lighting, for portable lighting such as table lamps, car headlamps, and flashlights, and for decorative and advertising lighting.

Incandescent bulbs are very inefficient than other types of electric lighting, converting less than 5% of the energy into visible light. The remaining energy is lost as radiant heat. The luminous efficacy of a typical incandescent bulb for is 16 lumens per watt, compared with 60 lm/W for a compact fluorescent bulb (CFL) or 150 lm/W for white LED lamps.

Some applications actually use the heat generated by the filament. Heat lamps are made for uses such as incubators, lava lamps, etc. Quartz tube lamps are used for industrial processes such as paint curing or for space heating.

Incandescent bulbs typically have short lifetimes compared with other types of lighting; 1,000 hours for home light bulbs versus 10,000 hours for compact fluorescents (CLF) and 30,000 hours for lighting LEDs. Incandescent bulbs can easily be replaced by fluorescent lamps, high-intensity discharge lamps, and light-emitting diode lamps (LED).

A Short History

The first incandescent lamp was introduced on October 21,1879, by Thomas Edison. The original bulb used a carbon filament in a bulb containing a vacuum. Modern bulbs now primarily use tungsten filaments with a gas fill instead of a vacuum, though bulbs using thin filaments and lower currents still utilize a vacuum because they function more efficiently.

The Filament

The filament acts as a resistor. An electric current passes through the filament, and resistance in the filament causes it to heat and incandesce. Filaments typically reach temperatures well over 2000 °Celsius.

Most of the energy consumed by the bulb is given off as heat, causing its Lumens per Watt (LPW) performance to be low. Because of the filament's high temperature, the tungsten tends to evaporate and collect on the sides of the bulb. The inherent imperfections in the filament causes it to become thinner unevenly. When a bulb is turned on, the sudden surge of energy can cause the filament to break, because the thin areas heat up so much faster than the rest of the filament, leading to bulb failure.

Quality of Light

Incandescent lamps exhibit smooth, even spectral power distribution (SPD) because they use the heat of a solid object to produce light. Incandescent lamps also score very high on CRI ratings, but because standard incandescent lamps produce very little radiant energy in the short wavelength end of the spectrum, they do not render blues very well.

The Upside

The low color temperature combined with a high CRI casts a warm light which provides excellent color rendition of skin tones. In addition, incandescent lamps are affordable, can be controlled by dimming circuits, and are available in a wide range of sizes, configurations and wattages.

Lamp Components

A B C D E F G H I J K L M

  1. Bulb: Soft glass is generally used. Hard glass is used for some lamps to withstand higher bulb temperatures and for added protection against bulb breakage due to moisture. Bulbs are made in various shapes and finishes.
  2. Filament: The filament material is generally tungsten. The filament may be a straight wire, a coil or a coiled-coil.
  3. Lead-In Wires: Lead-In Wires are made of copper from base to stem press and nickel-plated copper or nickel from stem press to filament, they carry the current to the filament.
  4. Tie Wires: Molybdenum wires support lead-in wires.
  5. Stem Press: The lead-in wires in the glass have an air tight seal here and are made of a nickel-iron alloy core and a copper sleeve (Dumet wire) to assure about the same coefficient of expansion as the glass.
  6. Exhaust Tubes: Air is exhausted out of and inert gases are introduced into the bulb through this tube during manufacturing. The tube, which originally projects beyond the bulb, is then sealed off short enough to be capped by the base.
  7. Base: This is where electrical contact is made. One lead-in wire is soldered to the center contact and the other soldered or welded to the upper rim of the base shell. Made of brass or aluminum.
  8. Gas: A mixture of nitrogen and argon is used in most lamps 40 watts and over. Gas slows down the evaporation of the filament.
  9. Support Wires: Molybdenum wires support the filament.
  10. Button: Glass is heated during manufacturing and support and tie wires placed in it.
  11. Button Rod: Glass rod supports the button.
  12. Heat Deflector: Used in higher wattage general service lamps and other types when needed to reduce circulation of hot gasses into neck of bulb.
  13. Fuse: Fuse wire protects the lamp and circuit by blowing if the filament arcs.

JLC manufactures finished Lead-in-wires, raw materials for lamps, and support wires for different kinds of lamps. JLC Electromet is the only producer of lighting raw materials for Lead-In-Wires as well as finished Lead-In-Wires from the alloying stage. The company is proud to be lighting billions of lamps across the globe in homes, offices, hospitals, highways, airports, institutions, etc.

Lamp components include finished Lead-in-wires, raw materials for lamps, and support wires for different kinds of lamps. JLC Electromet is the only producer of lighting raw materials for Lead-In-Wires as well as finished Lead-In-Wires from the alloying stage.

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.