DUMET . NET
Everything You Wanted To Know About Dumet Wire

Light Bulb

Today's incandescent light bulbs greatly resemble Edison's original lamps. The major differences are the use of tungsten filaments, various gases for higher efficiency and increased lumination resulting from filaments heated to higher temperatures. Although the incandescent lamp was the first and certainly the least expensive type of light bulb, there are a host of other light bulbs that serve myriad uses:

Raw Materials

This section as well as the following one will focus on incandescent light bulbs. As mentioned earlier, many different materials were used for the filament until tungsten became the metal of choice during the early part of the twentieth century. Although extremely fragile, one of the main components in a light bulb, the filament, is prepared by mixing tungsten and binder and then drawing the mixture into a fine wire around a steel mandrel. Aher heating the wire and then dissolving the mandrel with acid, the filament assumes its proper coiled shape.

Tungsten filaments can withstand temperatures as high as 4500 degrees Fahrenheit (2480 degrees Celsius) and above. The development of the tungsten filaments is considered the greatest advancement in light bulb technology because these filaments could be produced cheaply and last longer than any of the previous materials.

The connecting or lead-in wires are typically made of nickel-iron wire (called dumet because it uses two metals). This wire is dipped into a borax solution to make the wire more adherent to glass. The bulb itself is made of glass and contains a mixture of gases, usually argon and nitrogen, which increase the life of the filament. Air is pumped out of the bulb and replaced with the gases. A standardized base holds the entire assembly in place. The base, known as the "Edison screw base," was originally made of brass and insulated with plaster of paris and, later, porcelain. Today, aluminum is used on the outside and glass is used to insulate the inside of the base, producing a stronger base.

The Manufacturing Process

The uses of light bulbs range from street lights to automobile headlights to flashlights. For each use, the individual bulb differs in size and wattage, which determine the amount of light the bulb gives off (lumens). However, all incandescent light bulbs have the three basic parts—the filament, the bulb and the base. Originally produced by hand, the light bulb manufacture is now almost entirely automated.

Filament

  1. The filament is manufactured through a process known as drawing, in which tungsten is mixed with a binder material and pulled through a die—a shaped orifice—into a fine wire. Next, the wire is wound around a metal bar called a mandrel in order to mold it into its proper coiled shape, and then it is heated in an process known as annealing. This process softens the wire and makes its structure more uniform. The mandrel is then dissolved in acid.
  2. The coiled filament is attached to the lead-in wires. The lead-in wires have hooks at their ends which are either pressed over the end of the filament or, in larger bulbs, spot-welded.

Glass bulb

  1. The glass bulbs or casings are produced using a ribbon machine. After heating in a furnace, a continuous ribbon of glass moves along a conveyor belt. Precisely aligned air nozzles blow the glass through holes in the conveyor belt into molds, creating the casings. A ribbon machine moving at top speed can produce more than 50,000 bulbs per hour. After the casings are blown, they are cooled and then cut off of the ribbon machine. Next, the inside of the bulb is coated with silica to remove the glare caused by a glowing, uncovered filament. The company emblem and bulb wattage are then stamped onto the outside top of each casing.

    Virtually the entire light bulb manufacturing process is automated. The glass bulbs are blown by a ribbon machine that can produce more than 50,000 bulbs per hour. After the filament and stem assembly are inserted into the bulb, the air inside the bulb is evacuated and an argon/nitrogen mixture is pumped in. Finally, the base is sealed on.

Base

  1. The base of the bulb is also constructed using molds. It is made with indentations in the shape of a screw so that it can easily fit into the socket of a light fixture.

Assembly

  1. Once the filament, base, and bulb are made, they are fitted together by machines. First, the filament is mounted to the stem assembly, with its ends clamped to the two lead-in wires. Next, the air inside the bulb is evacuated, and the casing is filled with an argon and nitrogen mixture. These gases ensure a longer-life for the filament. The tungsten will eventually evaporate and break. As it evaporates, it leaves a dark deposit on the bulb known as bulb-wall blackening.
  2. Finally, the base and the bulb are sealed. The base slides onto the end of the glass bulb such that no other material is needed to keep them together. Instead, their conforming shapes allow the two pieces to be held together snugly, with the lead-in wires touching the aluminum base to ensure proper electrical contact. After testing, bulbs are placed in their packages and shipped to consumers.

Quality Control

Light bulbs are tested for both lamp life and strength. In order to provide quick results, selected bulbs are screwed into life test racks and lit at levels far exceeding their normal burning strength. This provides an accurate reading on how long the bulb will last under normal conditions. Testing is performed at all manufacturing plants as well as at some independent testing facilities. The average life of the majority of household light bulbs is 750 to 1000 hours, depending on wattage.

 

from http://www.madehow.com/Volume-1/Light-Bulb.html